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Symmetry analysis of electronic states for crystals with 
spiral magnetic order: 11. Connection with limiting 
cases 

L M Sandratskii 
Institute of Metal Physics, Ural Division of the USSR Academy of Sciences. Sverdlovsk 
620219. USSR 

Received 7 June 1990, in final form 5 April 1991 

Abstract. Compatibility relations between the electronic states of crystals with spiral mag- 
netic order and the statesof non-magnetic, ferromagneticand antiferromagneticcrystals are 
discussed. The results thus obtained permit one to predict the character of the electronic 
spectrum change o n  transition from a limiting case to a spiral structure. An anomaly in the 
optical characteristics of heavy rare-earth metals, which is observed on transition from the 
ferromagnetic structure to a spiral structure. is interpreted. 

1. Introduction 

In the previous paper [l], a general approach was developed for studying the symmetry 
of the electron spectrum exhibited by spiral magnetic configurations. 

Ascertaining the changes that the spectrum undergoes with respect to one of the 
limiting cases of a non-magnetic, ferromagnetic, or antiferromagnetic crystal (see e.g. 
[2,3]). well studied in terms of conventional band calculations, is vital to the qualitative 
interpretation of the electron spectrum of a spiral magnetic configuration. To perform 
a group-theoretical analysis of these changes, one needs to establish a relationship 
between the states of the limiting case as obtained in a conventional calculation and 
the states of the spiral that arise when the parameters of the spiral tend to values 
corresponding to  a given limiting case. Knowledge of the compatibility relations for the 
states of the spiral and limiting magnetic structures permits one, in particular, to predict 
a change in the degeneracy of levels as the spiral parameters deviate from their limiting 
values.Asarule,achangein thedegeneracyofstates hasimportantphysicalimplications 
[2,4]. 

The search for compatibility relations can be effected only on the basis of spin-space 
groups (SSG) and should contain the following stages: (i) describing the limiting-case 
symmetry in the language of SSG and constructing SSG irreducible representations (IR) 
whose basisismadeupofelectronicstates that arecalculatedin aconventionalapproach 
and correspond to a given vector k,; (ii) defining, in the approach based on the con- 
sideration of a spiral, the vectors k that correspond to the states belonging, in a con- 
ventional approach, to the vector k,; and (iii) studying the interrelation between the 
constitutions of the groups of wavevectors k and ko in the two approaches under con- 
sideration. 
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Next, knowing the constitutions of the wavevector groups and the characters of the 
IR of these groups, one can readily find representations at point k that correspond to a 
given IR at poini ko. 

We shall consider peculiarities of the application of this scheme to different limiting .. . 
cases. 

A general approach to solving the problems of the first step is developed in [ 5 ] .  Thc 
task of the second step has been discussed in [6]. We focus on aspects of the problem 
that were not discussed in those papers. The last section is devoted to the application of 
the results obtained to the experimental anomaly in the optical spectrum for heavy rare- 
earth metals (REM). 

The present paper is closely connected with the previous paper [I]. Therefore, we 
usesome notations of [l]. In the text there are also references to formulae of [l]. These 
formulae are labelled by two numbers. 

All band-structure calculations represented in this paper have been carried out with 
the Korringa-Kohn-Rostoker (KKR) method [7] using the spin-polarized potential of 
Tb [8] as the local potential (2.3) in [l]. 

2. Non-magnetic crystal 

The SSG of a non-magnetic crystal (NMC) involves operations{(YS/ eRlt}, where as is any 
spin rotation and {aR/f}  is an element of the space group (SG) of the crystal. The 
traditional classification of the NMC states is based on the use of IRS, D;&", of the group 
Go of the wavevector ko. The group contains lattice symmetry transformations for 'P which 

aRko = ko + K,. (1) 

{cl 4f.W&) = exp(-kot,)y&). (2) 

Here numbers the states satisfying the traditional Bloch condition 

The corresponding IR of the group CA, ,  which includes the SSG operators {aus\nRlt} 
satisfying (1). can be represented in the form of a direct product: 

D p d { %  I a R  It}) = Was) x D,%"(hl~}). (3) 

The doubling of the dimension of ( 3 )  relative to  DBor, reflects the degeneracy of NMC 
states with opposite spin projections. 

Let us find the compatibility relations between the states of an NMC and those of a 
spiral with vectorq in the limit V+ +. V -  (see formula (2.3) in [I]). For the generalized 
translations, equality (3) takes the form ' 

where E is a unit matrix. Thus we obtain the well known result [6]  that the NMC 
states with wavevector ko and spin projection U are transformed into spiral states with 
wavevector k, = + lug. Therefore, in analysing the spectrum, it isuseful at the outset 
to shift the nonmagnetic bands with spin projection U by the vector iuq. 
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The subsequent analysiscalls for a consideration of the constitutionof the N~cgroup  
of wavevector ko and the constitution of wavevector k, group of the spiral structure. In 
view of (4.6b), the condition (5.5) imposed on the operations aR of the wavevector k ,  
groupisequivalent,foroperationsofty~~I,tocondition(l)forvector ko. Foroperations 
of type 11, the use of (4.76) permits one to show that equality (5.5) is equivalent to the 
condition 

a,ko = k, - oq + K, .  (5 )  
From (1) and ( 5 )  we can draw the following conclusions: (i) an operation of type I enters 
into the group of the wavevector & if and only if this operation enters into the vector k, 
group; (ii) if q is not a reciprocal-lattice vector, then any operation of type I1 from the 
vector k,  group will not enter into the group of the vector k,; and (iii) if q is a reciprocal- 
lattice vector, then the groups of the vectors ko and k, contain the same set of type I1 
operations. 

Therefore, one needs to distinguish between the following three cases: 

( a )  q is not a reciprocal-lattice vector, 
Gha does not contain operations of type 11; 

( b )  q is a reciprocal-lattice vector; (6 )  
(c) q is not a reciprocal-lattice vector, 

G k o  contains operations of type 11. 

In the cases ( a )  and (b) ,  G k ,  is a subgroup of G,,. Hence, to find an interconnection 
between the representation indicespo numbering the states in the traditional treatment 
of an NMC and the indicesp numbering the states in the case of a spiral, it is sufficient to 
find the restriction of representation (3) on group Ghn. The representation thusobtained 
is, in general, reducible. The multiplicity factor of the pth IR in this reducible rep- 
resentation is defined by 

where x ~ & ~  is the character of representation (3), xpx,  the character of group C,, IR,  
and n(Ghn)  the number of group Gko elements. 

In case (c), GkC is not a subgroup of G,,,. As is seen from formula (7.8), in this case 
the basis of a group G i n  IR may contain functions that belong to different IR in the 
traditional approach. Thus, the states corresponding to the same IR of the wavevector 
group of the spiral may belong to different representations (3). To study the inter- 
connection of the states in case ( c ) .  one needs to find the restrictions of the group G,, 
representations (3) and also the Gko IR on the greatest common subgroup of these 
groups, Gin. This subgroup consists of elements of Gk,,  which belong to type I .  Inter- 
connected Ckn and G,, representations will be representations whose restrictions on 
subgroup Gio contain the same IR of Gio.  

Figure 1 shows the transformation of the electron spectrum on the transition from 
an NMC to a spiral. Indices of the IR labelling the states of the NMC in the traditional 
approach (figure l ( a ) )  and in the consideration of the NMC as a limiting case of the spiral 
(figure l(b)) are givenin the figure. We noteonly themost substantialpoints.Twostates 
corresponding, in the traditional treatment, to the two-dimensional IRA,  are shifted in 
the case of the spiral by a distance &q and belong to two different representations, A ,  
and A,. As a result, the appearance of a non-zero exchange field leads to lifting of the 
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Figure 1. Transformation of the electronic speclrum on lransition from NMC to spiral. (a) 
The spectrum of the NMC tor the L axis points in the traditional approach. (b)  The spectrum 
ofrhcNMCcOnSideredasalimi1 ofthespiralwithp = (0.0, n~c)(fullculves)andthesprctrum 
olthesswirh thesamep( points).Thescaleoftheabscissaisgivenin~lcunits. Tocalculate 
the non-magnetic slate, the spin campanents of the spin-polarized potential of Tb [E] were 
averaged. 
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degcneracyof the A t  and A2 states at points 244. (As the intersecting bands belong to 
different representations, their intersections near the points Z$q persist (figure l(b)); 
but the pointsof intersection are accidental.) In the case of the spiral, the point with z = 
1 corresponds to type (c). In the nonmagnetic limit, A I  unites the states that in the 
traditional classification (figure l ( a ) )  are described by the IR A ,  at point Iq + n/c and 
by the IR A2 at point -3q + n/c, and also by theopposite spin indices ff = 1 and ff = -1. 
respectively, (The state A; at point fq + n/c is equivalent to the state A ,  at point 
-n/c + 1q shown in figure 1.) This degeneracy of states is a result of the symmetry of 
the problem and remains for a non-zero exchange field. The degeneracy of the NMC 
states at point r (figure 1(b)) is accidental from the viewpoint of the symmetry of the 
spiraI and is lifted for a non-zero exchange field. As both intersecting bands correspond 
to the same IR at the points of the direction A, the degeneracy of states does not shift to 
another point but disappears. 

Figure l(b) shows that, for the given spiral parameters, the main changes of the 
electron spectrum as the NMC transforms to a crystal with a spiral magnetic structure 
may be treated as a mutual 'repulsion' of non-magnetic bands near point r. In this 
connection, it is useful to devote some attention to the term 'super-zone boundary', 
which is often used in the analysis of the electron spectrum of spiral magnetic con- 
figurations [2,4]. 

Let 0 1 ~  be a transformation entering into the symmetry group of an NMC and leading 
to the invariance of the spectrum under a reflection in a plane, and let the spiral vector 
q be perpendicular to that plane. Then, on displacing the spin sub-bands of the NMC by 
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the vectors “$4, we again obtain the degeneracy of states with opposite spin projections 
at the points of the plane. For the spiral considered in figure 1 ,  the degeneracy takes 
place at the points of the z = 0 and z = n / c  planes, in particular at the points r a n d  A 
shown in figure l (b) .  The degeneracy lifting (because of the non-zero spiral exchange 
field) at all points of the plane may be interpreted as the appearance of ‘super-zone 
boundaries’. But here it is worth pointing out that, first, for the spirals described by the 
Hamiltonian (2.2), the change of the Brillouin zone (BZ) does not actually take place 
and, as was mentioned in [l], the bands of the spiral magnet are continuous in the szof 
the NMC. In fact, we deal with the lifting of the degeneracy for definite states that have 
equal energies in the non-magnetic limit. Secondly, the application of the term ‘super- 
zone boundary’ calls for an exhaustive symmetry analysis, as degeneracy can take place 
in the case of a non-zero spiral field, too (see the point with z = 1 in figure l ( b ) ) .  

3. Ferromagnetic crystal 

The SSG of aferromagnetic crystal (FMC) contains operations {asiaRlt}, where asis any 
spin rotation about the magnetization axis and {aR It} is an element of the lattice sG.  The 
IR of the SSG of the wavevector ko may be represented in the form 

Dv$o({cp I a R  It}) = exp(-giu~)D~,,,(la=lI}) (8) 

where C ,  is a spin rotation by an angle rp. States with opposite spin projections U on the 
magnetization direction belong to different representations of the SSG. 

The transition from a spiral structure to a ferromagnetic structure may be obtained 
by letting the angle 0 or the vector q tend to zero (see formula (2.1) in [l]). 

If we let 0 tend to zero, we obtain, analogously to the case of an NMC, the result that 
if a ferromagnetic state with spin index U corresponds to a vector ko in the traditional 
classification, that state will correspond, from the viewpoint of the spiral, to point k,, = 
k, + +uq. Hence, to compare the spectra of the ferromagnet and spiral, it is useful to 
shift ferromagnetic bands by the vector 6uq. For 0 # n/2 a spiral structure has no 
symmetry operations of type 11. Therefore, the case (c )  in (6) is never realized and the 
group of the wavevector k,  for the spiral is always a subgroup of the vector ko group for 
the FMC. Hence, with the bands shifted, the main changes of the FMC spectrum reside in 
the splittingof multidimensional representationsand in the ‘repulsion’ of the bands near 
the points of their intersection if, from the ‘spiral’ viewpoint, the bands belong to the 
same IR. (A figure illustrating this process can be found in [SI.) 

With the vector q tending to zero, the spiral states turn into ferromagnet states with 
the same value of the wavevector. Therefore, the changes in the spectrum are connected 
with a decrease in the number of operations in the wavevector group and include the 
‘repulsion’ of bands belonging to the same IR of the spiral SSG and the splitting of 
multivalued IR. 

Figure 2 allows one to compare the electron spectra of an FMC and an SS for three 
directions in the BZ of an HCP crystal. Although the value of the spiral vector is not very 
small, the spectra are close. As was supposed, substantial changes are obtained only 
in the regions where the ‘repulsion’ of opposite-spin bands arises. The splitting of 
multidimensional representations does not take place because all operations aR of the 
HcP-lattice crystal class enter into the symmetry group of the ss (see table 1 of [l]). We 
do not show the indices of the IR in figure 2 because the corresponding tables of IR were 
not given in [l]. Note that. in accord with the analysis of section 7 of [l], the SSG of the 
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i L H i 
Figure 2. The encrgyspcclrum of ticPcrystal with ferromagnetic(a) and spiral magnetic ( b )  
sfrucfures. The spiral parameters are q = (0.0. s/k) and R = 90'. The regions of the main 
changcson rransilionfromfhc~cfothespiralarc markedbycircles.Thearrowsshow the 
electronic transitions betweenslablc parlsofthe bands. These transifionrdetermine a weak 
dependence of 1hc posilion of the optical peak with respect to the variation of magnetic 
stmcture[1(1. 111. 

spiral for the directions AH and LH have, just as in the traditional case of the SG D&, 
only one IR. That is why all the intersections of the bands have disappeared for these 
directions. 

4. Antiferromagnetic crystal 

The conventional treatment of the electron structure of a two-sublattice anti- 
ferromagnetic crystal (AFC) rests on the use of a space group that contains operations 
leaving the magnetic sublattices invariant. For the sake of brevity we shall discuss only 
the crystals with one atom per unit cell. 

Each sublattice c a n  be considered as a ferromagnetic crystal. Hence, the operations 
of the sublattice SSG may be written in the form {C, I aR It;}, where C, is a spin rotation 
through an arbitrary angle rp about the axis parallel to magnetic moments; the t:, are 
translations that connect the sublattice atoms. Let Gf,, be the SG of the vector ko and 
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Gi! be the corresponding SSG of the sublattice. Then, for the IR of these groups, we can 
wnte, by analogy with (S), 

Dokwo({cq l a R j f i l )  = exp(-~i~~)DPopo({nRiti}). (9)  

In addition to the symmetry operations of the sublattice, the SSG of an AFC also 
contains operations transforming one sublattice into other. As a representative of this 
class of transformations, we can take the operation g ,  = {a(n)ie/to], where a(n) is a 
spin rotation through an angle n about the z axis (without restricting the generality of 
the consideration, we may suppose that the magnetic moments are parallel to the x axis) 
and to is a translation connecting the sublattices. To construct the IR of the group 

e,, = G o  + GLg2 (10) 

we can use the method used in section 7 of [ l ]  for the construction of the IR of a group 
on the basis of the IR of its half-subgroup. The formula for the characters of the subgroup 
representations (9) takes the form 

Xmkwo(g&i') = X(-o)kop&h) exp[-iko . ( F ~ R ~ O  + toll = ~ ( - ~ ) x ~ @ )  (11) 

where p o  = ph if the exponent is always equal to 1 and p o  # P A  in the opposite case; 
h E Cia. The representations Doh,,) and D ~ - y ) k w , ,  are inequivalent because they cor- 
respond to opposite U values. Therefore, to construct the IR of Gk0,  one needs to use 
formulae (7.8). The representation takes the form 

The dimension doubling for the representation (12) relative to the representation (9) 
reflects the degeneracy of  st states with opposite spin projectionson magnetic moment 
direction. This degeneracy takes place at any point of reciprocal space. As is apparent 
from (12). the degenerate states may belong to different representations, p and p ' .  
coupled by condition (1 1). 

To clarify the interconnection of the AFC states obtained in the traditional approach, 
and the same states obtained as a limit of the spiral states, we find the restriction of (12) 
on the group of generalized translations {a(q . t,,) I e It,,], where t ,  runs over all sites of the 
lattice t;  + to. The representation thus obtained may be reduced with the help of the 
unitary matrix 

(13) 
1 U = 2-1" 

. t o )  -iexp(-iko .to) 

and takes the form 

Hence, just as with an NMC and an FMC, the states corresponding to ko in the traditional 
consideration of an AFC correspond to the wavevectors kc = - &cq, j = rl,  in the 
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treatment of the AFC as the limit of the spiral. But the AFC case has the following 
important difference. 

For all three limiting cases, the Hamiltonian (2.2) commutes with the operator of 
the spin projection on a ‘global’ z axis. Hence, one can find the electronic states in a 
form where they have a definite projection on the ‘global’ axis. This possibility is used 
in traditional approaches. 

In the case of an mC and an NMC, the operator of the spin projection on the ‘global’ 
axis commutes also with all ordinary and generalized translations. The ordinary and 
generalized translations commute with each other. Thus, in the NMC and mic the states 
having a definite spin projection on the ‘global’ axis satisfy both the traditional (2) and 
generalized (3.4) Blochtheorems. Contrary to theNMCandmc,generalized translations 
of the AFC that connect different sublattices fail to commute with the operator of the 
spin projection on the’global‘axis. Hence, the ~~Cs ta t e sused  traditionally, which have 
a definite spin projection and satisfy Bloch’s theorem (2) .  cannot satisfy thegeneralized 
Blochcondition (3.4) for all generalized translations. 

Therefore. restricting the representations (3) and (7). obtained in the traditional 
approach to the NMC and FMC. on the group of generalized translations immediately 
gives diagonal matrices with the values exp(-ik,. &) on the diagonal. In the AFC case 
this result is obtained only after a unitary transformation with the matrix (13). This 
transformation mixes pairs of states that have opposite spin projections on the ‘global’ 
axis and that satisfy Bloch’s theorem (2) for the space translations from the sublattice 
symmetrygroup. Asaresult, weobtainstates that satisfy thegeneralized BJoch theorem 
but have no definite spin projection of the ‘global’ axis. 

Thus, two different approaches are possible in the AFC case. The first is based on the 
sublatticesymmetry group and reflects the inequivalence of atomsof different sublattices 
with respect to the ‘global’axis parallel to the magnetic moments. The second approach 
allows for the equivalence of all atoms, which is reflected in the invariance of fhe crystal 
relative to generalized translations. 

Note that for strictly non-collinear structures the electron states cannot be charac- 
terized by adefinitespin projectionon any axisand one can useonly thesecondapproach. 
which rests on fhe generalized Bloch theorem. 

The mutual inequivalence of both approaches to AFCleads to the followingpeculiarity 
of the antiferromagneticspectrum. For an AFC the spiralvector qis avector of the lattice 
reciprocal to the latticc of vectors t i ,  but it  is equal to only half a vector of the lattice 
reciprocal to the set of all translations t,$. Therefore, the reciprocal-space volume con- 
taining all inequivalent states (that is, the volume of the BZ) in the traditional case is a 
factor of 2 smaller than that used in the approach to the AFC from the viewpoint of the 
spiral. However, the irreducible domains that contain the states not connected by 
symmetry are the same in both cases because in the ‘spiral’ approach the spectrum of 
the ~Fcsatisfies the symmetry condition 161 

z(k) = ~ ( k  + 4). (15) 
Thus. an energy level of the AFC is characterized in the traditional approach by a 

point k,,andindicesp,andpi, oftheIROf Glo. In the‘spiral’approach. tothislevel there 
correspond states at the points kl. To find the corresponding indices of the IR of the 
g o u p  G k c ,  one can use the circumstance easily proved that Gk, is always a subgroup of 
Gro. Hence, to define the indices of the IR of Gk,:, one needs to find the restriction of 
the representation (12) on the group G,; and, usmg tables of characters and a formula 
analogous to (7), to decompose the reducible representation thus obtained. 
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5. Application to analysis of optical anomaly in rare-earth metals 

Thus, the methods of group theory permit us to predict the character of the energy band 
change in going from one of the limiting magnetic structures to a spiral structure. The 
foregoing analysis has shown that the appearance of ‘super-zone boundaries’ in the NMC 
spectrum (figure 1) and the disappearance of some intersections of bands in the FMC 
spectrum (figure 2) are processes of similar physical nature. Both processes are associ- 
ated with the ‘repulsion’ of the electron states that have opposite spin projections and 
belong, in the case of the spiral, to the same IR of the SSG. The difference between NMC 
andFMcliesinthefactthat,in t h e ~ ~ ~ c a s e ,  the points where theliftingofthedegeneracy 
takes place form planes in reciprocal space and may be predicted from symmetry 
considerations. In the FMC case the positions of these points are accidental and depend 
on the physical parameters of the crystal. 

To give a qualitative interpretation of a spiral electron spectrum, it is natural to use 
a limiting spectrum closest to the spectrum being studied. An analysis of changes in the 
~ ~ c s p e c t r u m  on transition to a spiral structure is of special interest for rare-earth me:als 
(REM), where these transitions are actually observed in experiment. 

In particular, a comparison of the spectra given in figure 2 allows us to give an 
interpretation of the following experimental anomaly of the optical characteristics of 
heavy REM. Numerous optical experiments (see reviews [lo, 111) have detected an 
absorption peak whose position on the energy scale is proportional to the spin moment 
of an isolated REM atom. This peak has been ascribed to the electron transitions between 
the valence states split by the exchange field of the 4f shell. A non-trivial feature of the 
experiments is that the peak position depends weakly on magnetic-structure changes 
caused by temperature and magnetic field. In [12], to explain the weak temperature 
dependence of the ‘exchange’ peak position in Gd, the concept of a spin polaron [13] 
was used. The authors assumed that the width of the valence bands in Gd was much less 
than the value of the exchange splitting. As a result, for a non-collinear configuration, 
just as for aferromagnet, the valence-state spin direction near any atom is collinear to  
the direction of the atomic magnetic moment. Consequently, the energy distances 
between electron states are defined by the intra-atomic exchange field and have a weak 
dependence on the angles between the magnetic moments. 

The spin-polaron concept, explaining easily the weak dependence of optical peak on 
magnetic configuration, disagrees with the results of many works (see e.g. [2j), pointing 
out that it is the substantial magnetic-configuration dependence of the electronspectrum 
that defines the behaviour of the resistivity and of other physical characteristics. 

Ananalysisof figure2permitsus toresolve thiscontradiction. In the mccase  (figure 
2(a)) the optical peak is connected with the transitions between the states of the third 
and fourth bands, which are split by the 4f-shell exchange field and are characterized by 
opposite spin projections. (Obviously, the exchange splitting and the bandwidth are 
values of the same order.) In accord with the conclusions of the group-theoretical 
consideration, substantial changes of the third and fourth bands at a transition from a 
ferromagnet to a spiral arise only near the points where these bands intersect the 
opposite-spin bands. This permits us to separate out a considerable part of the bands 
that is situated near the points L and remains practically unchanged. A calculation shows 
that for this part of the spectrum the maximal admixture of states with an opposite local 
spin projection is close to 15%. The weak change of the third and fourth bands near the 
point L is connected evidently with their isolation from the other bands. Conversely, 
near the points of intersection of the ferromagnetic bands a strong spin hybridization is 
observed. The contribution by the opposite-spin states reaches 35%. 
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Thus. inspiteoftheinapplicabilityofthespin-polaronconcept tothe wholespectrum 
of REMS, the similarity between the general spectrum structure of a ferromagnet and 
thatof aspiral allowsone to indicate a spectral region that may bequalitatively described 
onthe basisofthisconcept.TheFermi1evelpositionissuch that thispartofthespectrum 
is involved in the optical transitions and is responsible for the stability of the peak on the 
experimental curves. 

At the same time, the spectrum of the spiral configuration has regions sensitive to 
the magnetic structure. Here a substantial distortion of the ferromagnetic bands is 
observed. This distortion leads, in particular, to alteration of the Fermi-surface charac- 
teristics. Obviously, this part of the spectrum should lead to a substantial variation of 
many physical characteristics, such as kinetic coefficients and total electron energy. 

Thus, the regions of the spectrum that respond in different ways to changes in 
magnetic structure determine the behaviour of the crystal in different experiments. 
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